

Electron Neutrino Charged-Current Interactions on I-127 in the COHERENT NalνE Detector

#420

Samuel Hedges, Duke University and TUNL for the COHERENT Collaboration

Motivation

$^{127}I + \nu_e \rightarrow ^{127}Xe^{(*)} + e^{-}$

- Few neutrino-nucleus interactions measured at $E_{\nu} < 300 \text{ MeV}$ (fig. 1), energies relevant for supernova ν
- 127I charged-current interaction proposed for solar and supernova v_e detection by Haxton^[2], can study interaction with well understood neutrino source at SNS
- Measurement of cross section could provide insight for g_A quenching^[3] at a momentum transfer of ~30 MeV, relevant for neutrinoless double beta decay

Isotope	Reaction Channel	Source	Experiment	Measurement (10^{-42} cm^2)	Theory (10^{-42} cm^2)
² H	$^2{ m H}(u_e,e^-){ m pp}$	Stopped π/μ	LAMPF	$52 \pm 18 (\mathrm{tot})$	54 (IA) (Tatara et al., 1990)
¹² C	$^{12}\text{C}(\nu_e, e^-)^{12}\text{N}_{\text{g.s.}}$	Stopped π/μ	KARMEN	$9.1 \pm 0.5 ({ m stat}) \pm 0.8 ({ m sys})$	9.4 [Multipole](Donnelly and Peccei, 1979)
		Stopped π/μ	E225	$10.5 \pm 1.0 ({ m stat}) \pm 1.0 ({ m sys})$	9.2 [EPT] (Fukugita et al., 1988).
		Stopped π/μ	LSND	$8.9 \pm 0.3 ({ m stat}) \pm 0.9 ({ m sys})$	8.9 [CRPA] (Kolbe et al., 1999b)
	$^{12}C(\nu_e, e^-)^{12}N^*$	Stopped π/μ	KARMEN	$5.1 \pm 0.6 (\mathrm{stat}) \pm 0.5 (\mathrm{sys})$	5.4-5.6 [CRPA] (Kolbe et al., 1999b)
		Stopped π/μ	E225	$3.6 \pm 2.0 ({ m tot})$	4.1 [Shell] (Hayes and S, 2000)
		Stopped π/μ	LSND	$4.3 \pm 0.4({\rm stat}) \pm 0.6({\rm sys})$	
	$^{12}C(\nu_{\mu}, \nu_{\mu})^{12}C^*$	Stopped π/μ	KARMEN		2.8 [CRPA] (Kolbe et al., 1999b)
	$^{12}C(\nu, \nu)^{12}C^*$	Stopped π/μ	KARMEN	$10.5 \pm 1.0 ({ m stat}) \pm 0.9 ({ m sys})$	10.5 [CRPA] (Kolbe et al., 1999b)
	$^{12}\mathrm{C}(u_{\mu},\mu^{-})\mathrm{X}$	Decay in Flight	LSND	$1060 \pm 30 ({ m stat}) \pm 180 ({ m sys})$	1750-1780 [CRPA] (Kolbe et al., 1999b)
					1380 [Shell] (Hayes and S, 2000)
					1115 [Green's Function] (Meucci et al., 2004)
	$^{12}C(\nu_{\mu}, \mu^{-})^{12}N_{g.s.}$	Decay in Flight	LSND	$56 \pm 8(\mathrm{stat}) \pm 10(\mathrm{sys})$	68-73 [CRPA] (Kolbe et al., 1999b)
					56 [Shell] (Hayes and S, 2000)
56 Fe	$^{56}\text{Fe}(\nu_e, e^-)^{56}\text{Co}$	Stopped π/μ	KARMEN	$256 \pm 108({\rm stat}) \pm 43({\rm sys})$	264 [Shell] (Kolbe et al., 1999a)
⁷¹ Ga	$^{71}{ m Ga}(u_e,e^-)^{71}{ m Ge}$	⁵¹ Cr source	GALLEX, ave.	$0.0054 \pm 0.0009(tot)$	0.0058 [Shell] (Haxton, 1998)
		⁵¹ Cr	SAGE	$0.0055 \pm 0.0007(tot)$	
		³⁷ Ar source	SAGE	$0.0055 \pm 0.0006(tot)$	0.0070 [Shell] (Bahcall, 1997)
^{127}I	$^{127}I(\nu_e, e^-)^{127}Xe$	Stopped π/μ	LSND	$284 \pm 91({\rm stat}) \pm 25({\rm sys})$	210-310 [Quasi-particle] (Engel et al., 1994)

Fig. 1. Neutrino-nucleus cross section measurements for low energy terrestrial sources from [1].

Previous Measurement

Fig. 3. Coincident ¹²⁷Xe decays and ¹²⁷I de-excitations from [4].

- Exclusive ¹²⁷I ν_e charged-current cross section measured at Los Alamos Meson Production Facility (LAMPF) in the 1990s, experiment E-1213^[4]
- Required final state of reaction to be ¹²⁷Xe, **inclusive cross** section never measured!
- No energy dependence measured (flux-averaged only)
- Used coincidences from ¹²⁷Xe decays to calculate amount ¹²⁷Xe produced

• Reported flux-averaged cross section over stopped-pion source ν_e spectrum of

$$\sigma = 2.84 \pm 0.91 \text{ (stat)} \pm 0.25 \text{ (sys)} \times 10^{-40} \text{ cm}^2$$

The NalvE Detector

- Consists of twenty-four 7.7-kg NaI[Tl] scintillators, ~20 m from SNS target, prototype for larger detector
- Triggers with internal logic, waveforms separated into eight 1250-ns windows, counts integrated in windows
- Calibrate and track gain changes over time using intrinsic ⁴⁰K and ²⁰⁸Tl peaks
- Largest background for reaction from cosmic muons, veto panels and steel used to reduce backgrounds
- See poster #13 for a machine-learning approach to further reducing cosmic muon backgrounds

Fig. 4. Waveform showing accumulators configuration

Fig. 5. Backgrounds with and without veto cut

Neutrinos at the SNS

• Spallation Neutron Source (SNS) creates neutrinos through stopped-pion decay

Fig. 6. Neutrino production at the SNS (simplified).

- 60-Hz pulsing, ~400-ns FWHM pulses, energy similar to supernova neutrinos
- ν_e delayed with respect to beam, reduces beamrelated backgrounds for charged-current signals
- v_e flux at 20m: $\Phi \approx 1.4 \times 10^7 v_e$ / cm² / sec

Fig. 7. Energy and timing distribution of neutrinos at the SNS

Signal Prediction & g_A

- Use MARLEY^[5] to simulate allowed ν_e charged-current reactions on $^{127}\mathrm{I}$
- Total cross section, states excited depend on $g_A^{[3]}$

Fig. 8. Effect of g_A quenching on calculated cross section, from [3]

- Forbidden transitions needed to understand g_A quenching's effect on energy spectrum, not yet included in MARLEY
- Simulations **do** predict a g_A quenching effect on total cross section

Fig. 9. MARLEY energy predictions showing effect of g_A quenching.

A Ton-Scale Nal Detector

Fig. 10. Current design for ton-scale detector

- Larger detector (300+ crystals) would improve charged-current statistics, also measure coherent elastic neutrino-nucleus scattering (CEvNS) on ²³Na
- Dual gain base designed to achieve dynamic range for both CEvNS and charged-current signals (3 keV to 55 MeV)
- Each crystal deployed needs to be characterized first, completed for ~150 crystals so far!
- Construction will begin soon, deployment to start in 2020
- See poster #554 for more details on ton-scale detector

Fig. 11. Expected charged current signal for a 3388kg detector after 3 years of operation.

Conclusions

- NaIvE trying to measure unobserved inclusive ν_e charged-current cross section on ^{127}I
- Collecting data since 2016, analysis ongoing
- Investigating sensitivity to g_A quenching with MARLEY
- Larger detector deployment to start in 2020, design and crystal characterization underway

References

- [1] J.A. Formaggio and G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307
- [2] W.C. Haxton, Phys. Rev. Lett. 60 (1988) 768
- [3] J. Engel, S. Pittel, and P. Vogel, Phys. Rev. C 50 (1994) 1702
- [4] J.R. Distel, et. al, Phys. Rev. C 68 (2003) 054613
- [5] https://marleygen.org